
Chapter 7

String Matching

7.1 Introduction

In this chapter, we study a number of algorithms on strings, principally, string
matching algorithms. The problem of string matching is to locate all (or some)
occurrences of a given pattern string within a given text string. There are many
variations of this basic problem. The pattern may be a set of strings, and the
matching algorithm has to locate the occurrence of any pattern in the text.
The pattern may be a regular expression for which the “best” match has to be
found. The text may consist of a set of strings if, for instance, you are trying
to find the occurrence of “to be or not to be” in the works of Shakespeare. In
some situations the text string is fixed, but the pattern changes, as in searching
Shakespeare’s works. Quite often, the goal is not to find an exact match but a
close enough match, as in DNA sequences or Google searches.

The string matching problem is quite different from dictionary or database
search. In dictionary search, you are asked to determine if a given word belongs
to a set of words. Usually, the set of words —the dictionary— is fixed. A
hashing algorithm suffices in most cases for such problems. Database searches
can be more complex than exact matches over strings. The database entries
may be images (say, thumbprints), distances among cities, positions of vehicles
in a fleet or salaries of individuals. A query may involve satisfying a predicate,
e.g., find any “hospital that is within 10 miles of a specific vehicle and determine
the shortest path to it”.

We spend most of this chapter on the exact string matching problem: given
a text string t and a pattern string p over some alphabet, construct a list of
positions where p occurs within t. See Table 7.1 for an example.

The naive algorithm for this problem matches the pattern against the string
starting at every possible position in the text. This may take O(m × n) time
where m and n are the two string lengths. We show three different algorithms
all of which run much faster, and one is an O(m + n) algorithm.

193

194 CHAPTER 7. STRING MATCHING

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
text a g c t t a c g a a c g t a a c g a
pattern a a c g
output * *

Table 7.1: The pattern matching problem

Exercise 83

You are given strings x and y of equal length, and asked to determine if x is a
rotation of y. Solve the problem through string matching. ✷

Solution Determine if x occurs as a substring in yy.

Notation Let the text be t and the pattern be p. The symbols in a string
are indexed starting at 0. We write t[i] for the ith symbol of t, and t[i..j] for
the substring of t starting at i and ending just before j, i ≤ j. Therefore, the
length of t[i..j] is j − i; it is empty if i = j. Similar conventions apply to p.

For a string r, write r for its length. Henceforth, the length of the pattern p,
p, is m; so, its elements are indexed 0 through m−1. Text t is an infinite string.
This assumption is made so that we do not have to worry about terminations
of algorithms; we simply show that every substring in t that matches p will be
found ultimately.

7.2 Rabin-Karp Algorithm

The idea of this algorithm is based on hashing. Given text t and pattern p, com-
pute val(p), where function val will be specified later. Then, for each substring
s of t whose length is p, compute val(s). Since

p = s ⇒ val(p) = val (s), or
val(p) 6= val (s) ⇒ p 6= s

we may discard string s if val(p) 6= val (s). We illustrate the procedure for strings
of 5 decimal digits where val returns the sum of the digits in its argument string.

Let p = 27681; so, val(p) = 24. Consider the text given in Table 7.2; the
function values are also shown there (at the position at which a string ends).
There are two strings for which the function value is 24, namely 27681 and
19833. We compare each of these strings against the original string, 27681, to
find that there is one exact match.

Function val is similar to a hash function. It is used to remove most strings
from consideration. Only when val(s) = val(p) do we have a collision, and we
match s against p. As in hashing, we require that there should be very few col-
lisions on the average; moreover, val should be easily computable incrementally,
i.e., from one string to the next.

7.2. RABIN-KARP ALGORITHM 195

text 2 4 1 5 7 2 7 6 8 1 9 8 3 3 7 8 1 4
val (s) 19 19 22 27 30 24 31 32 29 24 30 29 22 23

Table 7.2: Computing function values in Rabin-Karp algorithm

Minimizing Collisions A function like val partitions the set of strings into
equivalence classes: two strings are in the same equivalence class if their function
values are identical. Strings in the same equivalence class cause collisions, as
in the case of 27681 and 19833, shown above. In order to reduce collisions, we
strive to make the equivalence classes equal in size. Then, the probability of
collision is 1/n, where n is the number of possible values of val .

For the function that sums the digits of a 5-digit number, the possible values
range from 0 (all digits are 0s) to 45 (all digits are 9s). But the 46 equiva-
lence classes are not equal in size. Note that val (s) = 0 iff s = 00000; thus if
you are searching for pattern 00000 you will never have a collision. However,
val(s) = 24 for 5875 different 5-digit strings. So, the probability of collision
is around 0.05875 (since there are 105 5-digit strings). If there had been an
even distribution among the 46 equivalence classes, the probability of collision
would have been 1/46, or around 0.02173, almost three times fewer collisions
than when val(s) = 24.

One way of distributing the numbers evenly is to let val(s) = s mod q, for
some q; we will choose q to be a prime, for efficient computation. Since the
number of 5-digit strings may not be a multiple of q, the distribution may not
be completely even, but no two classes differ by more than 1 in their sizes. So,
this is as good as it gets.

Incremental computation of val The next question is how to calculate val
efficiently, for all substrings in the text. If the function adds up the digits in
5-digit strings, then it is easy to compute: suppose we have already computed
the sum, s, for a five digit string b0b1b2b3b4; to compute the sum for the next
substring b1b2b3b4b5, we assign s := s−b0+b5. I show that the modulo function
can be calculated equally easily.

The main observation for performing this computation is as follows. Suppose
we have already scanned a n-digit string “ar”, where a is the first symbol of the
string and r is its tail; let ar denote the numerical value of “ar”. The function
value, ar mod q, has been computed already. When we scan the digit b following
r, we have to evaluate rb mod q where rb is the numerical value of “rb”. We
represent rb in terms of ar, a and b. First, remove a from ar by subtracting
a × 10n−1; this gives us r. Next, left shift r by one position, which is r × 10.
Finally, add b. So, rb = (ar − a × 10n−1) × 10 + b. To compute rb mod q, for
prime q, we need a few simple results about mod.

(a + b) mod q = (a + b mod q) mod q
(a − b) mod q = (a − b mod q) mod q
(a × b) mod q = (a × b mod q) mod q

196 CHAPTER 7. STRING MATCHING

Modular Simplification Rule
Let e be any expression over integers that has only addition, subtraction,

multiplication and exponention as its operators. Let e′ be obtained from e

by replacing any subexpression t of e by (t mod p). Then, e
mod p≡ e′, i.e.,

e mod p = e′ mod p.
Note that an exponent is not a subexpression; so, it can’t be replaced by its

mod.

Examples

(20 + 5) mod 3 = ((20 mod 3) + 5) mod 3
((x × y) + g) mod p = (((x mod p) × y) + (g mod p)) mod p
xn mod p = (x mod p)n mod p
x2n mod p = (x2)n mod p = (x2 mod p)n mod p
xn mod p = xn mod p mod p, is wrong. ✷

We use this rule to compute rb mod q.

rb mod q
= {rb = (ar − a × 10n−1) × 10 + b}

((ar − a × 10n−1) × 10 + b) mod q
= {replace ar and 10n−1}

(((ar mod q) − a × (10n−1 mod q)) × 10 + b) mod q
= {let u = ar mod q and f = 10n−1 mod q, both already computed}

((u − a × f) × 10 + b) mod q

Example Let q be 47. Suppose we have computed 12768 mod 47, which is
31. And, also 104 mod 47 which is 36. We compute 27687 mod 47 by

((31 − 1 × 36)× 10 + 7) mod 47
= ((−5) × 10 + 7) mod 47
= (−43) mod 47
= 4 ✷

Exercise 84

Show that the equivalence classes under mod q are almost equal in size. ✷

Exercise 85

Derive a general formula for incremental calculation when the alphabet has d
symbols, so that each string can be regarded as a d-ary number. ✷

7.3 Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm (KMP) locates all occurrences of a pattern
in a text in linear time (in the combined lengths of the two strings). It is a
refined version of the naive algorithm.

7.3. KNUTH-MORRIS-PRATT ALGORITHM 197

7.3.1 Informal Description

Let the pattern be “JayadevMisra”. Suppose, we have matched the portion
“JayadevM” against some part of the text string, but the next symbol in the
text differs from ’i’, the next symbol in the pattern. The naive algorithm would
shift one position beyond ’J’ in the text, and start the match all over, starting
with ’J’, the first symbol of the pattern. The KMP algorithm is based on the
observation that no symbol in the text that we have already matched with
“JayadevM” can possibly be the start of a full match: we have just discovered
that the there is no match starting at ’J’, and there is no match starting at any
other symbol because none of them is a ’J’. So, we may skip this entire string
in the text and shift to the next symbol beyond “JayadevM” to begin a match.

In general, we will not be lucky enough to skip the entire piece of text that
we had already matched, as we could in the case of “JayadevM”. For instance,
suppose the pattern is “axbcyaxbts”, and we have already matched “axbcyaxb”;
see Table 7.3. Suppose the next symbol in the text does not match ’s’, the next
symbol in the pattern. A possible match could begin at the second occurrence
of ’a’, because the text beginning at that point is “axb”, a prefix of the pattern.
So, we shift to that position in the text, but we avoid scanning any symbol in
this portion of the text again. The formal description, given next, establishes
the conditions that need to be satisfied for this scheme to work.

7.3.2 Algorithm Outline

At any point during the algorithm we have matched a portion of the pattern
against the text; that is, we maintain the following invariant where l and r are
indices in t defining the two ends of the matched portion.

KMP-INV:
l ≤ r ∧ t[l..r] = p[0..r − l], and
all occurrences of p starting prior to l in the text have been located.

The invariant is established initially by setting

l, r := 0, 0

In subsequent steps we compare the next symbols from the text and the
pattern. If there is no next symbol in the pattern, we have found a match, and
we discuss what to do next below. For the moment, assume that p has a next
symbol, p[r − l].

t[r] = p[r − l] → r := r + 1
{ more text has been matched }

t[r] 6= p[r − l] ∧ r = l → l := l + 1; r := r + 1
{ we have an empty string matched so far;

the first pattern symbol differs from the next text symbol }
t[r] 6= p[r − l] ∧ r > l → l := l′

{ a nonempty prefix of p has matched but the next symbols don’t }

198 CHAPTER 7. STRING MATCHING

Note that in the third case, r is not changed; so, none of the symbols in
t[l′..r] will be scanned again.

The question (in the third case) is, what is l′? Abbreviate t[l..r] by v and
t[l′..r] by u. We show below that u is a proper prefix and a proper suffix of v.
Thus, l′ is given by the longest u that is both a proper prefix and a proper suffix
of v.

From the invariant, v is a prefix of p. Also, from the invariant, u is a prefix
of p, and, since l′ > l, u is a shorter prefix than v. Therefore, u is a proper
prefix of v. Next, since their right ends match, t[l′..r] is a proper suffix of t[l..r],
i.e., u is a proper suffix of v.

We describe the algorithm in schematic form in Table 7.3. Here, we have
already matched the prefix “axbcyaxb”, which is v. There is a mismatch in
the next symbol. We shift the pattern so that the prefix “axb”, which is u, is
aligned with a portion of the text that matches it.

index l l′ r
text a x b c y a x b z - - - - - -
pattern a x b c y a x b t s
newmatch a x b c y a x b t s

Table 7.3: Matching in the KMP algorithm

In general, there may be many strings, u, which are both proper prefix and
suffix of v; in particular, the empty string satisfies this condition for any v.
Which u should we choose? Any u we choose could possibly lead to a match,
because we have not scanned beyond t[r]. So, we increment l by the minimum
required amount, i.e., u is the longest string that is both a proper prefix and
suffix of v; we call u the core of v.

The question of computing l′ then reduces to the following problem: given a
string v, find its core. Then l′ = l+(length of v)− (length of core of v). Since v
is a prefix of p, we precompute the cores of all prefixes of the pattern, so that we
may compute l′ whenever there is a failure in the match. In the next subsection
we develop a linear algorithm to compute cores of all prefixes of the pattern.

After the pattern has been completely matched, we record this fact and let
l′ = l + (length of p) − (length of core of p).

We show that KMP runs in linear time. Observe that l + r increases in each
step (in the last case, l′ > l). Both l and r are bounded by the length of the
text string; so the number of steps is bounded by a linear function of the length
of text. The core computation, in the next section, is linear in the size of the
pattern. So, the whole algorithm is linear.

7.3. KNUTH-MORRIS-PRATT ALGORITHM 199

7.3.3 The Theory of Core

First, we develop a small theory about prefixes and suffixes from which the
computation of the core will follow.

A Partial Order over Strings For strings u and v, we write u � v to mean
that u is both a prefix and a suffix of v. Observe that u � v holds whenever u
is a prefix of v and the reverse of u is a prefix of the reverse of v. As is usual,
we write u ≺ v to mean that u � v and u 6= v.

Exercise 86

Find all strings u such that u ≺ ababab. ✷

The following properties of � follow from the properties of the prefix relation;
you are expected to develop the proofs. Henceforth, u and v denote arbitrary
strings and ǫ is the empty string.

Exercise 87

1. ǫ � u.

2. � is a partial order. Use the fact that prefix relation is a partial order.

3. There is a total order among all u where u � v, i.e.,

(u � v ∧ w � v) ⇒ (u � w ∨ w � u) ✷

7.3.3.1 Definition of core

For any nonempty v, core of v, written as c(v), is the longest string such that
c(v) ≺ v. The core is defined for every v, v 6= ǫ, because there is at least one
string, namely ǫ, that is a proper prefix and suffix of every nonempty string.

Example We compute cores of several strings.

a ab abb abba abbab abbabb abbabba abbabbb
ǫ ǫ ǫ a ab abb abba ǫ

Table 7.4: Examples of Cores

The traditional way to formally define core of v, c(v), is as follows: (1)
c(v) ≺ v, and (2) for any w where w ≺ v, w � c(v). We give a different, though
equivalent, definition that is more convenient for formal manipulations. For any
u and v, v 6= ǫ,

(core definition): u � c(v) ≡ u ≺ v

200 CHAPTER 7. STRING MATCHING

It follows, by replacing u with c(v), that c(v) ≺ v. In particular, c(v) < v. Also,
every non-empty string has a unique core. To see this, let r and s be cores of
v. We show that r = s. For any u, u � c(v) ≡ u ≺ v. Using r and s for c(v),
we get

u � r ≡ u ≺ v and u � s ≡ u ≺ v

That is, u � r ≡ u � s, for all u. Setting u to r, we get r � r ≡ r � s, i.e.,
r � s. Similarly, we can deduce s � r. So, r = s from the antisymmetry of �.✷

Exercise 88

Let u be a longer string than v. Is c(u) necessarily longer than c(v)? ✷

Exercise 89

Show that the core function is monotonic, that is,

u � v ⇒ c(u) � c(v) ✷

We write ci(v) for i-fold application of c to v, i.e., ci(v) =

i times︷ ︸︸ ︷
c(c(..(c (v)..)))

and c0(v) = v. Since c(v) < v, ci(v) is defined only for some i, not necessarily
all i, in the range 0 ≤ i ≤ v. Note that, ci+1(v) ≺ ci(v) . . . c1(v) ≺ c0(v) = v.

Exercise 90

Compute ci(ababab) for all possible i. What is ci(ab)n, for any i, i ≤ n? ✷

7.3.3.2 A characterization of � in terms of core

The following proposition says that any string u, where u ≺ v, can be obtained
by applying function c a sufficient (non-zero) number of times to v.

P1: For any u and v,

u � v ≡ 〈∃i : 0 ≤ i : u = ci(v)〉

Proof: The proof is by induction on the length of v.

• v = 0:

u � v
≡ {v = 0, i.e., v = ǫ}

u = ǫ ∧ v = ǫ
≡ {definition of c0: v = ǫ ⇒ ci(v) is defined for i = 0 only}

〈∃i : 0 ≤ i : u = ci(v)〉

7.3. KNUTH-MORRIS-PRATT ALGORITHM 201

• v > 0:

u � v
≡ {definition of �}

u = v ∨ u ≺ v
≡ {definition of core}

u = v ∨ u � c(v)

≡ {c(v) < v; apply induction hypothesis on second term}
u = v ∨ 〈∃i : 0 ≤ i : u = ci(c(v))〉

≡ {rewrite}
u = c0(v) ∨ 〈∃i : 0 < i : u = ci(v)〉

≡ {rewrite}
〈∃i : 0 ≤ i : u = ci(v)〉 ✷

Corollary For any u and v, v 6= ǫ,

u ≺ v ≡ 〈∃i : 0 < i : u = ci(v)〉 ✷

7.3.3.3 Incremental Computation of Core

We show how to compute the core of string us, where u is a string and s a
symbol, from c(u), c2(u), c3(u), · · ·. First, suppose that us has a non-empty
core. Then that core is of the form vs for some string v, because the core of us
has to be a suffix of us; therefore, its last symbol has to be s.

vs ≺ us
≡ {definition of ≺}

vs is a proper prefix of us, vs is a proper suffix of us
≡ {vs is a proper prefix of us ≡ v is a proper prefix of u and u[|v|] = s}

v is a proper prefix of u, u[|v|] = s, vs is a proper suffix of us
≡ {vs is a proper suffix of us ≡ v is a proper suffix of u}

v is a proper prefix of u, u[|v|] = s, v is a proper suffix of u
≡ {definition of ≺}

v ≺ u, u[|v|] = s
≡ {proposition P1: v ≺ u ≡ (∃i : i > 0 : v = ci(u))}

(∃i : i > 0 : v = ci(u)), u[|v|] = s

To compute the core of us find the longest v such that v = ci(u)) for some
positive i, and u[|v|] = s. So, we have to find the smallest i meeting these
conditions. That is, check if u[|c1(u)|] = s, if not, check if u[|c2(u)|] = s, · · ·.
These checks continue until we either find some j such that u[|cj(u)|] = s —then,
v = cj(u) and the c(us) = vs— or, cj(u) is not defined —then c(us) = ǫ.

Example In Figure 7.1, u is a string and s is the symbol following it. The
prefixes of u ending at A, B, C are c1(u), c2(u) and c3(u), and the symbols
following them are a, b, c, respectively. Here C is the empty string. To compute
the core of us, match s against a; in case of failure, match s against b, and again
in case of failure, match s against c.

202 CHAPTER 7. STRING MATCHING

sabc

AC uB

Figure 7.1: Incremental Core Computation

7.3.4 Computing Cores of all Non-empty Prefixes

The KMP algorithm needs the core of string q when the pattern match fails
after having matched q. String q is a prefix of the pattern string p. Therefore,
we pre-compute the cores of all non-empty prefixes of p.

7.3.4.1 Computing cores of all prefixes of a pattern

We compute the cores of pattern p using the scheme of Section 7.3.3.3. The
core for the empty prefix is undefined. For a prefix of length 1, the core is ǫ.
Next, suppose we have computed the cores of all prefixes of p up to length j;
we then compute the core of the next longer prefix, of length j + 1, using the
scheme of Section 7.3.3.3.

First, let us decide how to store the cores. Any core of a prefix of p is a prefix
of p. So, we can simply store the length of the core. We store the cores in array
d, where d[k], for k > 0, is the length of the core of p[0..k], i.e., d[k] = |c(p[0..k])|.
(Prefix of length 0 is ǫ which does not have a core.)

The following program has the invariant that the cores of all prefixes up to
and including p[0..j] are known; let u be p[0..j]. The goal of the program is to
next compute the core of us where s = p[j]. To this end, we apply the scheme
of Section 7.3.3.3, whereby we successively check if u[|c1(u)|] = s, u[|c2(u)|] = s,
· · ·, . Suppose u[|ck(u)|] 6= s for all k, 0 < k < t. We next have to check if
u[|ct(u)|] = s. Let i = |ct(u)|; so the check is if u[i] = s, or since u is a prefix of
p, p[i] = s, or since p[j] = s, if p[i] = p[j]. If this check succeeds, we have found
the core of us, i.e., of p[0..j + 1]; it is simply p[0..i + 1], or d[j + 1] = i + 1. If
the check fails, we have to set i := |ct+1(u)| = |c(ct(u))| = |c(p[0..i])| = d(i).
However, if i = 0 then d(i) is not defined, and we conclude that the core of
p[0..j + 1] = ǫ, or d[j + 1] = 0.

Below, b → C, where b is a predicate and S a sequence of statements, is
known as a guarded command ; b is the guard and C the command. Command
C is executed only if b holds. Below, exactly one guard is true in any iteration.

j := 1; d[1] := 0; i := 0;
while j < p do

S1:: p[i] = p[j] → d[j + 1] := i + 1; j := j + 1; i := d[j]
S2:: p[i] 6= p[j] ∧ i 6= 0 → i := d[i]
S3:: p[i] 6= p[j] ∧ i = 0 → d[j + 1] := 0; j := j + 1; i := d[j] {i = 0}

endwhile

7.3. KNUTH-MORRIS-PRATT ALGORITHM 203

7.3.4.2 Analysis of the running time of core computation

We show that the program for core computation runs in linear time in the
length of pattern p. Specifically, execution of each guarded command increases
2j − i. Since j ≤ p and i ≥ 0 (prove these as invariants), 2j − i never exceeds
2p. Initially, 2j − i = 2. Therefore, the number of executions of all guarded
commands is O(p).

Now, we consider the right side of each guarded command Sk, 1 ≤ k ≤ 3,
and show that each one strictly increases 2j − i, i.e.,

{2j − i = n} right side of Sk {2j − i > n}

• Proof for S1:

{2j − i = n} d[j + 1] := i + 1; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := i + 1; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := i + 1 {2(j + 1) − d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1) − (i + 1) > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1) − (i + 1) > n
, simplify

true , arithmetic ✷

• Proof for S2:

{2j − i = n} i := d[i] {2j − i > n}
, goal

2j − i = n ⇒ 2j − d[i] > n , axiom of assignment
2j − i < 2j − d[i] , arithmetic
d[i] < i , arithmetic

true , i = u and d[i] = c(u) ✷

• Proof for S3:

{2j − i = n} d[j + 1] := 0; j := j + 1; i := d[j] {2j − i > n}
, goal

{2j − i = n} d[j + 1] := 0; j := j + 1 {2j − d[j] > n}
, axiom of assignment

{2j − i = n} d[j + 1] := 0 {2(j + 1) − d[j + 1] > n}
, axiom of assignment

{2j − i = n} {2(j + 1) − 0 > n}
, axiom of assignment

2j − i = n ⇒ 2(j + 1) > n , simplify
true , arithmetic and i ≥ 0 (invariant) ✷

204 CHAPTER 7. STRING MATCHING

Exercise 91

1. Show that you can match pattern p against text t by computing the cores
of all prefixes of pt (pt is the concatenation of p and t).

2. Define u to be the k-core of string v, where k ≥ 0 and v 6= ǫ, if u ≺ v, u’s
length is at most k and u is the longest string with this property. Show
that the k-core is well-defined. Devise an algorithm to compute the k-core
of a string for a given k. ✷

7.4 Boyer-Moore Algorithm

The next string matching algorithm we study is due to Boyer and Moore. It has
the best performance, on the average, of all known algorithms for this problem.
In many cases, it runs in sublinear time, because it may not even scan all
the symbols of the text. Its worst case behavior could be as bad as the naive
matching algorithm.

At any moment, imagine that the pattern is aligned with a portion of the
text of the same length, though only a part of the aligned text may have been
matched with the pattern. Henceforth, alignment refers to the substring of t
that is aligned with p and l is the index of the left end of the alignment; i.e.,
p[0] is aligned with t[l] and, in general, p[i], 0 ≤ i < m, with t[l + i]. Whenever
there is a mismatch, the pattern is shifted to the right, i.e., l is increased, as
explained in the following sections.

7.4.1 Algorithm Outline

The overall structure of the program is a loop that has the invariant:

Q1: Every occurrence of p in t that starts before l has been recorded.

The following loop records every occurrence of p in t eventually.

l := 0;
{ Q1 }
loop

{ Q1 }
“increase l while preserving Q1”
{ Q1 }

endloop

Next, we show how to increase l while preserving Q1. To do so, we need to
match certain symbols of the pattern against the text. We introduce variable j,
0 ≤ j < m, with the meaning that the suffix of p starting at position j matches
the corresponding portion of the alignment; i.e.,

Q2: 0 ≤ j ≤ m, p[j..m] = t[l + j..l + m]

7.4. BOYER-MOORE ALGORITHM 205

Thus, the whole pattern is matched when j = 0, and no part has been matched
when j = m.

We establish Q2 by setting j to m. Then, we match the symbols from right
to left of the pattern (against the corresponding symbols in the alignment) until
we find a mismatch or the whole pattern is matched.

j := m;
{ Q2 }
while j > 0 ∧ p[j − 1] = t[l + j − 1] do j := j − 1 endwhile

{ Q1 ∧ Q2 ∧ (j = 0 ∨ p[j − 1] 6= t[l + j − 1]) }
if j = 0

then { Q1 ∧ Q2 ∧ j = 0 } record a match at l; l := l′ { Q1 }
else { Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1] } l := l′′{ Q1 }

endif

{ Q1 }

Next, we show how to compute l and l′, l′ > l and l′′ > l, so that Q1 is
satisfied. For better performance, l should be increased as much as possible in
each case. We take up the computation of l′′ next; computation of l′ is a special
case of this.

The precondition for the computation of l′′ is,

Q1 ∧ Q2 ∧ j > 0 ∧ p[j − 1] 6= t[l + j − 1].

We consider two heuristics, each of which can be used to calculate a value
of l′′; the greater value is assigned to l. The first heuristic, called the bad
symbol heuristic, exploits the fact that we have a mismatch at position j − 1
of the pattern. The second heuristic, called the good suffix heuristic, uses the
fact that we have matched a suffix of p with the suffix of the alignment, i.e.,
p[j..m] = t[l + j..l + m] (though the suffix may be empty).

7.4.2 The Bad Symbol Heuristic

Suppose we have the pattern “attendance” that we have aligned against a por-
tion of the text whose suffix is “hce”, as shown in Table 7.5.

text - - - - - - - h c e
pattern a t t e n d a n c e
align a t t e n d a n c e

Table 7.5: The bad symbol heuristic

The suffix “ce” has been matched; the symbols ’h’ and ’n’ do not match.
We now reason as follows. If symbol ’h’ of the text is part of a full match,
that symbol has to be aligned with an ’h’ of the pattern. There is no ’h’ in
the pattern; so, no match can include this ’h’ of the text. Hence, the pattern

206 CHAPTER 7. STRING MATCHING

may be shifted to the symbol following ’h’ in the text, as shown under align
in Table 7.5. Since the index of ’h’ in the text is l + j − 1 (that is where the
mismatch occurred), we have to align p[0] with t[l+j], i.e., l should be increased
to l + j. Observe that we have shifted the alignment several positions to the
right without scanning the text symbols shown by dashes, ’-’, in the text; this
is how the algorithm achieves sublinear running time in many cases.

Next, suppose the mismatched symbol in the text is ’t’, as shown in Table 7.6.

text - - - - - - - t c e
pattern a t t e n d a n c e

Table 7.6: The bad symbol heuristic

Unlike ’h’, symbol ’t’ appears in the pattern. We align some occurrence of ’t’
in the pattern with that in the text. There are two possible alignments, which
we show in Table 7.7.

text - - t c e - - - - - -
align1 a t t e n d a n c e
align2 a t t e n d a n c e

Table 7.7: New alignment in the bad symbol heuristic

Which alignment should we choose? The same question also comes up in
the good suffix heuristic. We have several possible shifts each of which matches
a portion of the alignment. We adopt the following rule for shift:

Minimum shift rule: Shift the pattern by the minimum allowable amount.

According to this rule, in Table 7.8 we would shift the pattern to get align1 .

Justification for the rule: This rule preserves Q1; we never skip over a possible
match following this rule, because no smaller shift yields a match at the given
position, and, hence no full match.

Conversely, consider the situation shown in Table 7.8. The first pattern line
shows an alignment where there is a mismatch at the rightmost symbol in the
alignment. The next two lines show two possible alignments that correct the
mismatch. Since the only text symbol we have examined is ’x’, each dash in
Table 7.8 could be any symbol at all; so, in particular, the text could be such
that the pattern matches against the first alignment, align1 . Then, we will
violate invariant Q1 if we shift the pattern as shown in align2 . ✷

For each symbol in the alphabet, we precalculate its rightmost position in
the pattern. The rightmost ’t’ in “attendance” is at position 2. To align the
mismatched ’t’ in the text in Table 7.7 that is at position t[l+j−1], we align p[2]
with t[l + j − 1], that is, p[0] with t[l− 2 + j − 1]. In general, if the mismatched

7.4. BOYER-MOORE ALGORITHM 207

text - - x - -
pattern x x y
align1 x x y
align2 x x y

Table 7.8: Realignment in the good suffix heuristic

symbol’s rightmost occurrence in the pattern is at p[k], then p[0] is aligned with
t[l− k + j − 1], or l is increased by −k + j − 1. For a nonexistent symbol in the
pattern, like ’h’, we set its rightmost occurrence to −1 so that l is increased to
l + j, as required.

The quantity −k + j − 1 is negative if k > j − 1. That is, the rightmost
occurrence of the mismatched symbol in the pattern is to the right of the mis-
match. Fortunately, the good suffix heuristic, which we discuss in Section 7.4.3,
always yields a positive increment for l; so, we ignore this heuristic if it yields a
negative increment.

Computing the rightmost positions of the symbols in the pattern
For a given alphabet, we compute an array rt, indexed by the symbols of the
alphabet, so that for any symbol ’a’,

rt(’a’) =

{
position of the rightmost ’a’ in p, if ’a’ is in p
−1 otherwise

The following simple loop computes rt.

let rt[’a’] := −1, for every symbol ’a’ in the alphabet;
for j = 0 to m − 1 do

rt[p[j]] := j
endfor

7.4.3 The Good Suffix Heuristic

Suppose we have a pattern “abxabyab” of which we have already matched the
suffix “ab”, but there is a mismatch with the preceding symbol ’y’, as shown in
Table 7.9.

text - - - - - z a b - -
pattern a b x a b y a b

Table 7.9: A good suffix heuristic scenario

Then, we shift the pattern to the right so that the matched part is occupied
by the same symbols, “ab”; this is possible only if there is another occurrence

208 CHAPTER 7. STRING MATCHING

of “ab” in the pattern. For the pattern of Table 7.9, we can form the new
alignment in two possible ways, as shown in Table 7.10.

text - - z a b - - - - - -
align1 a b x a b y a b
align2 a b x a b y a b

Table 7.10: Realignment in the good suffix heuristic

No complete match of the suffix s is possible if s does not occur elsewhere
in p. This possibility is shown in Table 7.11, where s is “xab”. In this case, the
best that can be done is to match with a suffix of “xab”, as shown in Table 7.11.
Note that the matching portion “ab” is a prefix of p. Also, it is a suffix of p,
being a suffix of “xab”, that is a suffix of p.

text - - x a b - - -
pattern a b x a b
align a b x a b

Table 7.11: The matched suffix is nowhere else in p

As shown in the preceding examples, in all cases we shift the pattern to align
the right end of a proper prefix r with the right end of the previous alignment.
Also, r is a suffix of s or s is a suffix of r. In the example in Table 7.10, s is
“ab” and there are two possible r, “abxab” and “ab”, for which s is a suffix.
Additionally, ǫ is a suffix of s. In Table 7.11, s is “xab” and there is exactly one
nonempty r, “ab”, which is a suffix of s. Let

R = {r is a proper prefix of p ∧
(r is a suffix of s ∨ s is a suffix of r)}

The good suffix heuristic aligns an r in R with the end of the previous
alignment, i.e., the pattern is shifted to the right by m − r. Let b(s) be the
amount by which the pattern should be shifted for a suffix s. According to the
minimum shift rule,

b(s) = min{m − r | r ∈ R}

In the rest of this section, we develop an efficient algorithm for computing b(s).

7.4.3.1 Shifting the pattern in the algorithm of Section 7.4.1

In the algorithm outlined in Section 7.4.1, we have two assignments to l, the
assignment

l := l′, when the whole pattern has matched, and
l := l′′, when p[j..m] = t[l + j..l + m] and p[j − 1] 6= t[l + j − 1]

7.4. BOYER-MOORE ALGORITHM 209

l := l′ is implemented by
l := l + b(p), and

l := l′′ is implemented by
l := l + max(b(s), j − 1 − rt(h)),

where s = p[j..m] and h = t[l + j − 1]

7.4.3.2 Properties of b(s), the shift amount for suffix s

We repeat the definition of b(s).

b(s) = min{m − r | r ∈ R}

Notation We abbreviate min{m − r | r ∈ R} to min(m − R). In general, let
S be a set of strings and e(S) an expression that includes S as a term. Then,
min(e(S)) = min{e(i) | i ∈ S}, where e(i) is obtained from e by replacing S by
i. ✷

Rewrite R as R′ ∪ R′′, where

R′ = {r is a proper prefix of p ∧ r is a suffix of s}
R′′ = {r is a proper prefix of p ∧ s is a suffix of r}

Then,

b(s) = min(min(m − R′), min(m − R′′))

where minimum over empty set is ∞.

P1: R is nonempty and b(s) is well-defined.
Proof: Note that ǫ ∈ R′ and R = R′ ∪ R′′. Then, from its definition, b(s) is
well-defined. ✷

P2: c(p) ∈ R
Proof: From the definition of core, c(p) ≺ p. Hence, c(p) is a proper prefix of p.
Also, c(p) is a suffix of p, and, since s is a suffix of p, they are totally ordered.
So, either c(p) is a suffix of s or s is a suffix of c(p). Hence, c(p) ∈ R. ✷

P3: min(m − R′) ≥ m − c(p)
Proof: Consider any r in R′. Since r is a suffix of s and s is a suffix of p, r is
a suffix of p. Also, r is a proper prefix of p. So, r ≺ p. From the definition of
core, r � c(p). Hence, m − r ≥ m − c(p) for every r in R′. ✷

P4: Let V = {v | v is a suffix of p ∧ c(v) = s}.
Then, min(m − R′′) = min(V − s)
Proof: Note that R′′ may be empty. In that case, V will be empty too and both
will have the same minimum, ∞. This causes no problem in computing b(s)
because, from (P1), R is nonempty.

210 CHAPTER 7. STRING MATCHING

Consider any r in R′′. Note that r is a prefix of p and has s as a suffix; so
p = xsy, for some x and y, where r = xs and y is the remaining portion of p.
Also, y 6= ǫ because r is a proper prefix. Let u stand for sy; then u is a suffix
of p. And, u 6= ǫ because y 6= ǫ, though u may be equal to p, because x could
be empty. Also, s is a prefix of u (u = sy) and a suffix of u (s and u are both
suffixes of p and u is longer than s). Therefore, s ≺ u. Define

U = {u | u is a suffix of p ∧ s ≺ u}
We have thus shown that there is a one-to-one correspondence between the

elements of R′′ and U . Given that p = xsy, r = xs, and u = sy, we have
m − r = y = u − s. Hence,

min(m − R′′) = min(U − s).

For a fixed s, the minimum value of u− s over all u in U is achieved for the
shortest string v of U . We show that c(v) = s. This proves the result in (P4).

v is the shortest string in U

⇒ {c(v) < v}
v ∈ U ∧ c(v) 6∈ U

⇒ {definition of U}
s ≺ v ∧ (c(v) is not a suffix of p ∨ ¬(s ≺ c(v))

⇒ {c(v) is a suffix of v and v is a suffix of p; so, c(v) is a suffix of p}
s ≺ v ∧ ¬(s ≺ c(v))

⇒ {definition of core}
(s = c(v) ∨ s ≺ c(v)) ∧ (¬(s ≺ c(v)))

⇒ {predicate calculus}
s = c(v) ✷

Note: The converse of this result is not true. There may be several u in U for
which c(u) = s. For example, consider “sxs” and “sxyx”, where the symbols ’x’
and ’y’ do not appear in “s”. Cores for both of these strings are “s”. ✷

7.4.3.3 An abstract program for computing b(s)

We derive a formula for b(s), and use that to develop an abstract program.

b(s)
= {definition of b(s) from Section 7.4.3.2}

min(m − R)
= {from (P2): c(p) ∈ R}

min(m − c(p), min(m − R))
= {R = R′ ∪ R′′, from Section 7.4.3.2}

min(m − c(p), min(m − R′), min(m − R′′))

= {from (P3): min(m − R′) ≥ m − c(p)}
min(m − c(p), min(m − R′′))

= {from (P4): min(m − R′′) = min(V − s)}
min(m − c(p), min(V − s))

7.4. BOYER-MOORE ALGORITHM 211

Recall that

V = {v | v is a suffix of p ∧ c(v) = s}

Now, we propose an abstract program to compute b(s), for all suffixes s of p.
We employ an array b where b[s] ultimately holds the value of b(s), though it is
assigned different values during the computation. Initially, set b[s] to m− c(p).
Next, scan the suffixes v of p: let s = c(v); update b[s] to v − s provided this
value is lower than the current value of b[s].

The program

assign m − c(p) to all elements of b;
for all suffixes v of p do

s := c(v);
if b[s] > v − s then b[s] := v − s endif

endfor

7.4.3.4 A concrete program for computing b(s)

The goal of the concrete program is to compute an array e, where e[j] is the
amount by which the pattern is to be shifted when the matched suffix is p[j..m],
0 ≤ j ≤ m. That is,

e[j] = b[s], where j + s = m, or
e[m − s] = b[s], for any suffix s of p

We have no need to keep explicit prefixes and suffixes; instead, we keep their
lengths, s in i and v in j. Let array f hold the lengths of the cores of all suffixes
of p. Summarizing, for suffixes s and v of p,

i = s,
j = v,
e[m − i] = b[s], using i = s,

f [v] = c(v), i.e., f [j] = c(v)

The abstract program, given earlier, is transformed to the following concrete
program.

assign m − c(p) to all elements of e;
for j, 0 ≤ j ≤ m, do

i := f [j];
if e[m − i] > j − i then e[m − i] := j − i endif

endfor

212 CHAPTER 7. STRING MATCHING

Computation of f The given program is complete except for the computa-
tion of f , the lengths of the cores of the suffixes of p. We have already developed
a program to compute the cores of the prefixes of a string; we employ that pro-
gram to compute f , as described next.

For any string r, let r̂ be its reverse. Now, v is a suffix of p iff v̂ is a prefix
of p̂. Moreover for any r (see exercise below)

c(r̂) = ĉ(r)

Therefore, for any suffix v of p and u = v̂,

c(u) = ĉ(v), replace r by v, above; note: r̂ = v̂ = u

c(v) = ĉ(v), r = r̂, for any r; let r = c(v)

c(u) = c(v), from the above two

Since our goal is to compute the lengths of the cores, c(v), we compute c(u)
instead, i.e., the lengths of the cores of the prefixes of p̂, and store them in f .

Exercise 92
Show that

1. r � s ≡ r̂ � ŝ

2. r ≺ s ≡ r̂ ≺ ŝ

3. c(r̂) = ĉ(r)

Solution

1. r � s
≡ {definition of �}

r is a prefix of s and r is a suffix of s
≡ {properties of prefix, suffix and reverse}

r̂ is a suffix of ŝ and r̂ is a prefix of ŝ
≡ {definition of �}

r̂ � ŝ

2. Similarly.

3. Indirect proof of equality is a powerful method for proving equality. This
can be applied to elements in a set which has a reflexive and antisymmetric
relation like �. To prove y = z for specific elements y and z, show that
for every element x,

x � y ≡ x � z.

Then, set x to y to get y � y ≡ y � z, or y � z since � is reflexive.
Similarly, get z � y. Next, use antisymmetry of � to get y = z.

We apply this method to prove the given equality: we show that for any

s, s � c(r̂) ≡ s � ĉ(r).

7.4. BOYER-MOORE ALGORITHM 213

s � c(r̂)
≡ {definition of core}

s ≺ r̂
≡ {second part of this exercise}

ŝ ≺ r
≡ {definition of core}

ŝ � c(r)
≡ {first part of this exercise}

s � ĉ(r) ✷

Execution time for the computation of b The computation of b(s), for
all suffixes s of p, requires (1) computing c(p), (2) computing array f , and (3)
executing the concrete program of this section. Note that (1) can be computed
from array f ; so, the steps (1,2) can be combined. The execution times of
(1), (2) and (3) are linear in m, the length of p, from the text of the concrete
program. So, array b can be computed in time that is linear in the length of the
pattern.

